

Isolated Gate Driver YMH-HH2A42

Datasheet

Key Features:

• 8 pin DFN: 6 mm high, 2.54 mm pitch

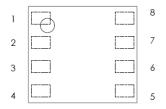
Open Voltage: 10V (min)

• Isolation Voltage: 3,000V (min)

• Optical Isolation for both Signal and Power

Under-Voltage Lockout Protection

Applications:


- MOSFET Gate Driver
- Switch Mode Power Supply
- Inverter / Converter
- Motor Driving Module

Product Description

MHGP's YMH-HH2A42 is a small footprint, high performance and optically isolated gate driver module, suitable for surface mount assembly. Unlike existing isolated gate drivers, the YMH-HH2A42 consists of a GaAs light emitting diode, optically coupled to a silicon-based MIH™ vertical multi-junction photovoltaic cell, providing voltage isolated power to drive power semiconductor devices such as MOSFETs.

The YMH-HH2A42 gate driver module provides the functionality of a traditional isolated power supply, a DC-DC converter, and a gate driver IC in a single component. This integrated, completely optically isolated and powered solution simplifies gate driver design, provides better noise immunity, reduces board size and cost, and provides higher voltage isolation.

Pin Configuration (top view)

Pin#	Name	Description
1	Anode1	Power LED Anode
2	Anode2	Signal LED Anode
3	Cathode2	Signal LED Cathode
4	Cathode1	Power LED Cathode
5	GND	GND
6	Vo	Voltage Output
7	Vo	Voltage Output
8	NC	

Electrical Characteristics (Ta = 25°C)

Characteristic			Test Condition	Symbol	Min	Тур.	Max	Unit
DC Specifications								
Power Input Signal	Dower	Forward Voltage	-	V_{F1}	2.6	-	2.9	V
	Power	Forward Current	_	I _{F1}	150	_	300	mA
		Forward Voltage	_	V _{F2}	1.7	-	2.5	V
	Signal	Forward Current	_	I _{F2}	5	_	20	mA
		Capacitance	_	C ₂	-	10	-	pF
Output Pov		Output High Voltage	I _{F1} = 200mA	V _{OH}	8	_	12	V
	Power	Output High Current Steady (Source)	I _{F1} = 200mA	I _{OHS}	1.2	_	-	mA
		Output High Current Peak (Source)	I _{F1} = 200mA	I _{OHP}	1	1.5	-	А
		Output Low Current (Sink)	I _{F1} = 0mA	I _{OL}	1	2.0	-	А
		UVLO Threshold +	-	$V_{\text{OUV+}}$	7.5	8.6	9.4	V
		UVLO Threshold -	-	V _{OUV-}	7.2	8.1	8.7	V
AC Specific	ations							
Propagation Delay Time to High Output Level		C _L = 200pF	T_{PDHL}	-	-	50	ns	
Propagation Delay Time to Low Output Level		C _L = 200pF	T _{PDLH}	-	_	30	ns	
Output Rise Time		C _L = 200pF	T _r	-	_	15	ns	
Output Fall Time		C _L = 200pF	T_f	1	_	15	ns	
Device Startup Time		-	T _{start}	-	_	15	ms	
Common Mode Transient Immunity		VCM = 1,500V	CMTI	-	30	-	kV/us	

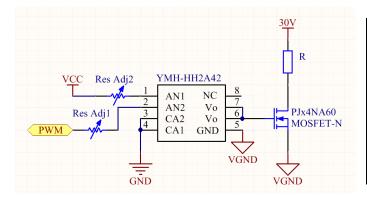
Recommended Operating Conditions

Characteristic	Symbol	Min	Тур.	Max	Unit
Power Forward Current	I _{F1}	150	-	200	mA
Signal Forward Current	I _{F2}	5	_	10	mA
Operating Temperature	T_{opr}	-20	_	65	$^{\circ}$

Note: Recommended operating conditions are given as a design guideline to obtain expected performance of the device. Additionally, each item is an independent guideline respectively.

Absolute Maximum Ratings (Ta = 25°C)

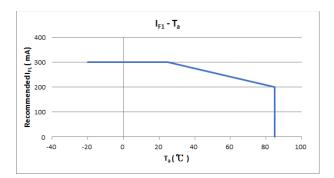
Characteristic			Symbol	Rating	Unit
	Power	Forward Current	I _{F1}	300	mA
		Reverse Voltage	V_{R1}	18	V
la a cab		Junction Temperature	T _{J1}	125	°C
Input	Signal	Forward Current	I _{F2}	20	mA
		Reverse Voltage	V_{R2}	0.5	V
		Junction Temperature	T _{J2}	125	°C
Outout	PV	Reverse Voltage	V_{RD}	> 1,000	V
Output		Junction Temperature	TJ	150	°C
Power Dissipation			P _D	1,000	mW
Storage Temperature Range			T_{stg}	-40 to 85	°C
Operating Temperature Range			T _{opr}	-20 to 85	°C
Lead Soldering Temperature (10 sec)			T_{sol}	260	°C
Isolated Voltage (Ta = 25° C, R.H. < 50%, t = 60 sec)			V _{iso}	3,000	V

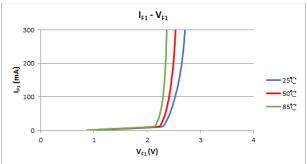

Under Voltage Lockout (UVLO)

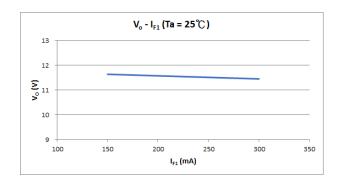
The UVLO circuit unconditionally drives V_O low when V_O is below the lockout threshold. During power up, the YMH-HH2A42 maintains in UVLO until V_{OH} rises above V_{OUV+} . During power down, the YMH-HH2A42 enters UVLO when V_{OH} falls below V_{OUV-} .

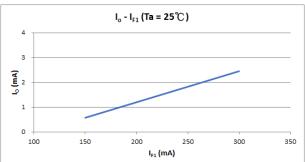
Typical Application Schematic

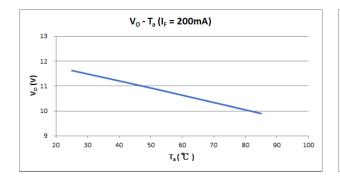
Example: PJx4NA60 MOSFET-N with MHGP YMH-HH2A42

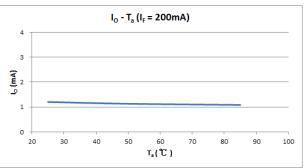

PJx4NA60 - Gate Charge: 11.1nC & Input capacitance: 450pF

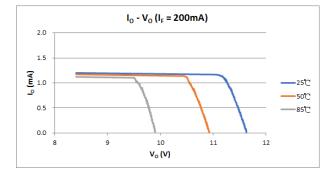


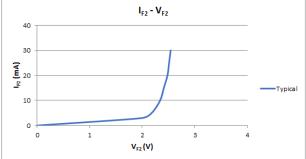

1 (m 1)	MOSFET-N V _{gs} (V)			
I _f (mA)	@ 30kHz	@ 65kHz		
130	8.8	-		
160	10.0	8.6		
180	10.4	9.2		
200	10.8	9.8		
$Ta = 25$ °C, all $T_r \& T_f < 15$ ns				

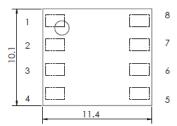


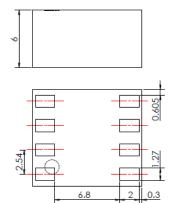

Typical Characteristics

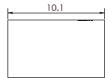




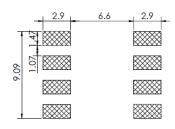








Mechanical Dimensions



Unit: mm Unless otherwise specified: ±0.1 Net weight: 1.4g

Recommended Land Pattern

MH GoPower Company Limited

TEL: +886-7-6955900 / FAX: +886-7-6955950 info@mhgopower.com / www.mhgopower.com

GoPowerX, Inc. (U.S. Subsidiary) TEL: +1-404-707-6029 / www.gopowerx.com

11 404 707 00257 <u>www.gopowerx.com</u>

